Foro sobre historia disidente de la Version Oficial y foro sobre neoruralidad y la Revolucion Integral inspirada en los estudios de Felix Rodrigo Mora.

Como se sospechaba: la REALIDAD no EXISTE

.
.
.
.
.

Moderadores: Historia, Ann.Onime

Como se sospechaba: la REALIDAD no EXISTE

Notapor Ann.Onime » 2019 11 26, 1:25

Hay que dejar de pensar en la Revolucion... ya que el Universo no existe... o eso a determinado la ciencia.

https://www.technologyreview.es/s/11019 ... o-cuantico


Derechos de autor de la imagen Alessandro Fedrizzi
Image caption Los investigadores utilizaron fotones para enviar información entre varios "observadores".

Para comprobarlo, físicos de la Universidad Heriot-Watt en Escocia, idearon un experimento que involucró cuatro observadores: Alice, Amy, Bob y Brian.

Estos personajes no son personas, en realidad son cuatro sofisticadas máquinas en un laboratorio.

La prueba consistió en que a Alice y Bob recibían un mensaje, que en este caso fue un fotón, que es una partícula cuántica de la cual está compuesta la luz.

Luego, Alice y Bob enviaban ese fotón a Amy y Brian, es decir le transmitieron el mensaje.

Y aquí va lo sorprendente: a pesar de que Alice y Bob le enviaron la misma información a Amy y Brian, estos dos últimos tuvieron la posibilidad de interpretarlo de una manera diferente.
Derechos de autor de la imagen Alessandro Fedrizzi
Image caption El profesor Fedrizzi fue el líder de la investigación.

El proceso es bastante complejo, pero es como si se formara un teléfono roto en el que un mismo mensaje se transforma a medida que pasa de una persona a otra.

Esto resultado está relacionado con un concepto de la mecánica cuántica, que dice que las partículas pueden entrelazarse y cambiar depende dependiendo "quién" las mire.

Para entender mejor las implicaciones de experimento, en BBC Mundo conversamos con el físico Alessandro Fedrizzi, líder de la investigación, quien trabaja como profesor en el Instituto de Fotónica y Ciencias Cuánticas de la Universidad Heriot-Watt.

¿Cuál el principal aporte de este experimento?

El mensaje es que en la teoría cuántica no hay hechos objetivos. Con esto nos referimos a que un mismo hecho no se ve de la misma manera para dos observadores.

Esto es algo que normalmente no esperamos en la ciencia, porque en ciencia es muy importante que los hechos sean iguales para todos los observadores.

Esta es la primera vez que alguien conduce un experimento que muestra que los hechos no son universales a nivel cuántico.

Cuando hablamos de hechos en la vida real, son cosas que se pueden verificar muy rápido. Lo que decimos es que en la teoría cuántica, a un nivel profundo, los hechos no son objetivos para los observadores.

Tecnología cuántica, el nuevo campo de batalla entre Estados Unidos y China

Derechos de autor de la imagen Getty
Image caption ¿Existen los hechos?

¿Eso quiere decir que los hechos no existen?

Los hechos existen, pero pueden que sean subjetivos. En la ciencia es muy importante que haya hechos en los que todos podamos estar de acuerdo, eso es lo que permite el desarrollo de la ciencia. Cualquier cosa que entendamos como un hecho científico, es algo en lo que todos podemos estar de acuerdo.

Ahora, resulta que en la teoría cuántica puede que ese no sea el caso, es decir, distintos observadores pueden tener acceso a distintos hechos que pueden coexistir entre ellos.

En la vida diaria eso difícilmente nos afectará, pero significa que tendremos que reescribir o cambiar nuestra comprensión de lo que realmente significa la mecánica cuántica a nivel fundamental.

¿Qué vino primero, el huevo o la gallina? La física cuántica tiene la respuesta

¿Este experimento puede tomarse como una prueba de que existen los "hechos alternativos"?

He visto gente que toma este experimento como una forma de decir que en realidad sí hay "hechos alternativos". Esta gente siempre dirá lo que se ajuste a sus creencias, pero nada de lo que vimos en nuestra investigación respalda esas afirmaciones.
Derechos de autor de la imagen Getty
Image caption ¿La realidad depende de quien la ve?

¿Existe la realidad a nivel cuántico?

Aún hay debate sobre si los sistemas cuánticos tienen un realidad, algunos dicen que sí, otros dicen que no. Este experimento no redefine lo que es la realidad, cuestiona más bien cómo percibimos esa realidad y plantea que la realidad que observa un individuo, puede que no sea la misma que observa otro.

¿Hay una frontera en la que las leyes de la física que vemos en la vida diaria comienza a cambiar?

Los cálculos que se utilizan en la ciencia no marcan una línea entre lo cuántico y lo que llamamos clásico. Las fórmulas no nos dan una regla acerca de en qué punto las cosas dejan de ser clásicas.

Qué es la cuarta dimensión y por qué, aunque la física logre confirmar su existencia, no la podríamos percibir

En teoría, yo podría describir cualquier cosa, incluyendo el universo entero, como un sistema cuántico, sin embargo, a nivel experimental aún estamos tratando de encontrar si hay una frontera, pero hasta ahora los sistemas que hemos podido ver que se rigen por la mecánica cuántica son muy pequeños, son sistemas de nanogramos o microgramos.

¿Cómo así?

Yo podría describir una pelota de tenis usando las reglas de la mecánica cuántica, pero lo que ocurre es que las propiedades cuánticas que ella tiene son imperceptibles en un objeto tan grande. Las cantidades que se obtienen del tratamiento cuántico de este objeto tan grande nos dicen que los efectos cuánticos a esta escala simplemente no pueden ser observados en el mundo real.
Derechos de autor de la imagen Getty
Image caption Quizás en un futuro tengamos que replantearnos lo que consideramos real.

Eso no significa que no sea cuántico, solo significa que los efectos no son visibles a esa escala. Pero actualmente, no estamos en capacidad de decir si la pelota de tenis es un sistema clásico o un sistema cuántico.

¿Cuál es el siguiente paso?

Quisiéramos aplicar este experimento con observadores más y más grandes, quizás algún día con observadores conscientes. Quizás fallará, en ese caso podremos concluir que en realidad sí hay una escala por encima de la cual la mecánica cuántica ya no se aplica.

Pero si funciona, una conclusión podría ser que incluso para observadores humanos, las observaciones pueden ser subjetivas.

En ese punto, quizás necesitemos cuestionar incluso la realidad de los hechos objetivos que percibimos en nuestra vida cotidiana.

* La Mecánica Cuántica es una de las áreas de estudio que más ha generado interés en nuestros lectores cuando les preguntamos cuáles temas les gustaría ver en nuestra sección de ciencia. Esta historia fue investigada y publicada en respuesta a ese deseo.






Albert Einstein estaba indignado.

Era diciembre de 1926 y la física o mécanica cuántica estaba dando sus primeros pasos como la ciencia que explica el mundo de las partículas más pequeñas, el cual es invisible a los ojos.

"La mecánica cuántica resulta imponente", escribió el físico alemán a su colega Max Born. "Pero una voz interior me dice que, así y todo, no es verdadera".

Y agregó: "La teoría ofrece mucho pero no nos acerca al secreto del Viejo. En cualquier caso, estoy convencido de que él no juega a los dados".

El gran experimento de física cuántica que refutó una teoría de Einstein

La famosa frase —eternamente citada pero no siempre comprendida en su justo contexto— muestra cómo aún una mente científica brillante como la de Einstein no podía concebir que, a escala de átomos y partículas subatómicas, el mundo fuera raro e impredecible.

En 1935 el físico austríaco Erwin Schrödinger explicó uno de esos extraños comportamientos elaborando lo que hoy es la metáfora más famosa de la física cuántica: la del gato en la caja.

Su experimento mental consistió en encerrar a un gato con un átomo radioactivo, el cual tiene 50% de probabilidades de desintegrarse y emitir un veneno que lo matará.

Pasado un tiempo, según las leyes de la física cuántica, el gato está vivo y muerto al mismo tiempo, una ambigüedad impensable en nuestra vida cotidiana donde los seres están o vivos o muertos.
Derechos de autor de la imagen Getty Images
Image caption El nobel Serge Haroche dará una charla y participará de varios paneles este sábado en Santiago de Chile en el marco de la conferencia "Nobel Prize Dialogue".

"La forma en que la naturaleza se comporta en esta escala se ve extraño porque es distinto a lo que estamos acostumbrados en el mundo macroscópico que nos rodea", dice a BBC Mundo el físico francés Serge Haroche.

Es que, continúa, "la física cuántica describe un mundo microscópico para el cual no tenemos una intuición directa".

¿Qué vino primero, el huevo o la gallina? La física cuántica tiene la respuesta
6 misterios que la física no ha podido resolver

Haroche lo tiene claro: desde que ganó el premio Nobel de física en 2012 viaja por el mundo intentando explicar esta realidad contraintuitiva.

El investigador de 74 años, que este sábado participa de la conferencia "Nobel Prize Dialogue" organizada en Santiago de Chile por la propia Fundación Nobel, habló sobre cómo el galardón cambió su vida, cómo es estudiar al "gato" de Schrödinger en el laboratorio y de la importancia de la física cuántica aún con la desaprobación de Einstein.

¿Qué piensa de la famosa frase de Einstein de que Dios no juega a los dados con el universo?

Einstein no hablaba de Dios en un sentido religioso, sino que, para él, Dios era una metáfora de la naturaleza. Lo que quería decir es que las leyes de la naturaleza no podían tener una aleatoriedad intrínseca, a lo que Born famosamente le respondió que quién era él para decir a qué juega Dios.

La frase refleja el hecho de que la falta de determinación de la física cuántica era algo que disgustaba a Einstein. Y no solo a Einstein: Schrödinger tampoco estaba cómodo con estos aspectos de la física cuántica.
Derechos de autor de la imagen Getty Images
Image caption Einstein también escribió a Born: "Tú crees en el Dios que juega a los dados y yo creo en la ley y la ordenación total de un mundo que es objetivo".

Pero la historia ha probado que, en este aspecto, Dios efectivamente está jugando a los dados. Hasta ahora no existe un solo experimento que contradiga el hecho de que la física cuántica incluye la aleatoriedad.

¿Es posible que el mundo a escala atómica y subatómica sea aleatorio porque aún no se conoce lo suficiente sobre él y que, en algún momento, la ciencia devele una serie de reglas predecibles como las del mundo que vemos en el día a día?

Creo que la aleatoriedad está aquí para quedarse. En la física cuántica no hay forma en que puedas predecir con certeza qué va a suceder. Pero eso no quiere decir que no podamos estar seguros de algunas cosas: sabemos que si tomamos determinadas medidas, vamos a obtener siempre el mismo resultado.

Tampoco quiere decir que no puedas hacer cosas muy precisas. De hecho, los relojes atómicos, que miden el tiempo con una exactitud fantástica, operan según las leyes de la física cuántica.

Es una teoría que tiene inscrita la aleatoriedad y, a la misma vez, permite tomar medidas que son mucho más precisas que las de la física clásica. Esta es una paradoja de la física cuántica que la hace fascinante.

Como científico, ¿cómo le hace sentir esta aleatoriedad?

Por supuesto que se siente raro, pero pienso que es porque nuestra intuición está vinculada a nuestra evolución.

Nuestros cerebros son el resultado de la evolución durante miles de generaciones, en la cual hemos estado expuestos al mundo macroscópico. Entonces tenemos una intuición sobre qué sucederá si, por ejemplo, un objeto está cayendo y cómo protegerte de ser golpeado en la cabeza por él. Esto obedece a las leyes de la física clásica.

Es una teoría que tiene inscrita la aleatoriedad y, a la misma vez, permite tomar medidas que son mucho más precisas que las de la física clásica. Esta paradoja la hace fascinante

En cambio, no estamos acostumbrados a entender qué pasa cuando un átomo se desintegra, por lo que tenemos que tratar de desconectarnos de nuestra intuición básica y aplicar las ecuaciones de la física cuántica que sabemos que funcionan.

Esto nos da otro tipo de intuición, una intuición matemática, una intuición sobre qué sucederá si hacemos un experimento.

De hecho, esto es algo que pasa en la ciencia a todo nivel. A medida que la ciencia progresa, puede provocar eventos que se ven raros y que se oponen a la sabiduría popular. Cuando Copérnico dijo que no era el Sol el que giraba alrededor de la Tierra sino al revés, fue una idea muy difícil de aceptar a nivel general y Galileo tuvo una experiencia muy mala tratando de convencer al Papa de ello.

Pelear contra las falsas intuiciones y falsas ilusiones es parte de la ciencia y, en la física cuántica, la ilusión del determinismo es un aspecto importante de la pelea.

Dado que va en contra de la intuición, ¿cómo suele explicar por qué ganó el premio Nobel de física en 2012?

(Se ríe.) Todavía es difícil de explicar. Durante los últimos 30 años, no solo yo sino muchos físicos han estado intentando aprender a manipular y medir sistemas cuánticos aislados, es decir, cómo trabajar con ellos, cómo ponerlos en diferentes tipos de estados cuánticos, cómo ponerlos a interactuar y ver qué resulta de ello.
Derechos de autor de la imagen Getty Images
Image caption David Wineland y Serge Haroche ganaron el Nobel de física en 2012 por desarrollar distintos métodos experimentales innovadores que permitieron medir y manipular sistemas cuánticos individuales.

Estos tipos de experimentos que hacen malabares con sistemas cuánticos aislados han sido posibles gracias al desarrollo de nuevas tecnologías como los láseres, en particular, un tipo de láseres de alta precisión que permiten manipular átomos.

Aquí es donde entra el premio Nobel: junto con mi amigo (el físico estadounidense) David Wineland lo ganamos por representar dos formas de lograr dicha manipulación.

Muchas otras personas podrían haber ganado el Nobel por ello. Nosotros solo somos dos personas que representan a una gran comunidad de investigadores de alrededor del mundo que están haciendo este tipo de experimentos.

Desde hace décadas que los científicos saben que las partículas aisladas se comportan de forma extraña, pero no podían observarlas en el laboratorio. Sin embargo, usted logró crear un experimento que por primera vez permitió ver al "gato" de Schrödinger decidir si estaba vivo o muerto. ¿Cómo fue posible?

Un sistema cuántico puede existir en una superposición de estados. En la metáfora del gato de Schrödinger la superposición sería una situación en la que el gato podría estar al mismo tiempo vivo y muerto. Por así decirlo, estaría "suspendido" entre estas dos realidades clásicas.

Por supuesto que esto no funciona para sistemas como gatos porque pasa en tiempos muy muy breves. Pero podemos observar este tipo de fenómenos si manipulamos sistemas mucho más pequeños, que no estén formados por "tropecientos" átomos, sino por apenas unos pocos átomos o unos pocos fotones. Entonces puedes preparar este tipo de superposición y estudiar cómo se pierden las características cuánticas de la superposición a medida que pasa el tiempo. Esto es justamente lo que hicimos.
Derechos de autor de la imagen Science Photo Library
Image caption El experimento diseñado por Haroche con láseres permitió ver al "gato" de Schrödinger y decidir si estaba vivo o muerto por primera vez en la historia.

Logramos atrapar en una caja un campo formado por unos pocos fotones y preparar este campo en una superposición cuántica de dos estados, que llamamos usando la metáfora del estado vivo y muerto. Luego, estudiamos cómo, después de un pequeño periodo, el sistema tenía que decidir si estaba vivo o muerto y no ambos al mismo tiempo.

Esta evolución de la física cuántica a la clásica es llamada decoherencia cuántica. Lo que hace es transformar la letra "y" en la palabra "o", por lo que el gato ya no está vivo y muerto, sino vivo o muerto. El estudio de la decoherencia fue, entonces, uno de los puntos más importantes de nuestra investigación.

¿Existe alguna aplicación práctica para este descubrimiento?

Si es útil o no todavía es una pregunta abierta. El campo de la tecnología cuántica se está expandiendo muy rápido hoy en día.

Hay gente intentando usar o aprovechar partículas cuánticas para hacer tareas útiles en las comunicaciones, la computación y en mediciones. Hay avances en muchas direcciones, pero es difícil saber cuál de estos avances llevará a inventos ampliamente utilizados como sucedió con otros aspectos de la física cuántica que llevaron al desarrollo de los láseres, el GPS y las computadoras que usamos hoy en día, por ejemplo.

A la gente le gusta llamar esto "la segunda ola de la revolución cuántica", pero por el momento todavía es algo muy incierto. Muchas de las cosas que estamos pensando que sucederán, no pasarán, pero otras tantas que no estamos siquiera imaginando, sí se harán realidad.

Esto es lo que siempre ha sucedido en el pasado. Los científicos abren nuevas avenidas y a menudo se presentan sorpresas inesperadas.
Derechos de autor de la imagen SSPL/Getty
Image caption Schrödinger creía que la ciencia jamás lograría manipular átomos aislados y que, por ende, la física cuántica no llegaría a estudiarse en el laboratorio.

¿Fue la computación cuántica una sorpresa para usted?

Cuando comencé a investigar, solo estaba fascinado por el reto de tratar de manipular un sistema cuántico y averiguar cómo la naturaleza se comportaría. Pero en ese entonces, algunas personas no creían que seríamos capaces de lograrlo. El propio Schrödinger dijo en los años 50 que nunca podríamos lograrlo porque para eso era necesario manipular átomos aislados y él pensó que eso siempre estaría en el dominio de los experimentos imaginarios y no del laboratorio.

Pero Schrödinger murió en 1961 y, en la década de 1960 y 1970, el láser fue desarrollado. En ese entonces yo era un joven investigador y me fascinaron las perspectivas que abría al láser. Y me di cuenta que efectivamente sería posible manipular átomos aislados. Pero no tenía idea de que podía derivar en una computadora cuántica.

Luego, en los 90, algunas personas empezaron a especular con que la computadora cuántica podía ser el resultado de este tipo de investigaciones. En ese entonces era escéptico porque me di cuenta que los experimentos con un solo átomo ya eran demasiado difíciles y para hacer funcionar una computadora cuántica, tendrías que manipular millones de átomos al mismo tiempo.

Esto todavía es un desafío hoy, 20 o 30 años después. Estamos jugando con pequeños sistemas, que demuestran los pasos básicos de la operación de una computadora, pero todavía no sabemos cómo podríamos aumentar hasta llegar al tamaño de una computadora que haga tareas verdaderas.

Para mí es fascinante cómo en la ciencia el resultado es mayormente impredecible. Lo único seguro es que nunca tendrás una aplicación y tecnología si antes no tienes ciencia básica, si no entiendes el fenómeno.

Lo que sucederá después no lo sabemos y hay muchísimos ejemplos de ello en la ciencia moderna.
Derechos de autor de la imagen IBM
Image caption Este mes la empresa IBM presentó lo que llamó "el primer sistema de computación cuántico integrado" para uso científico y comercial.

Por ejemplo, las tomografías o imágenes por resonancia magnética (IRM), que permiten tomar imágenes de adentro de nuestro cuerpo con una precisión fantástica y que son usadas por doctores de todas partes del mundo, son una aplicación de la resonancia nuclear magnética. Quienes inventaron la resonancia nuclear magnética en la década de 1940 se sorprendieron cuando, 20 años después, derivó en la creación de la máquina de IRM. Es que, para eso, no solo debías tener resonancia magnética, sino también campos magnéticos altos, que no eran posibles en aquella época, y debías tener computadoras, que no existían.

Todo esto es el resultado de una combinación de ciencia básica desarrollada por distintos científicos en distintas áreas y que se cristalizó en esta máquina de una manera que no pudo ser prevista cuando los primeros experimentos se hicieron.

¿Es de esto de lo que tratará la charla "La utilidad del conocimiento inútil" que dará en Chile?

Lo que llamamos "inútil" es la ciencia que está movida por la curiosidad y la "útil" es la que lleva a una aplicación y a dispositivos. Lo que decimos es que está mal oponer este tipo de ciencias: no hay forma de tener aplicaciones prácticas o "útiles" si no haces ciencia básica o "inútil" antes.

La ciencia que se mueve solo por la necesidad de aumentar el conocimiento es algo muy importante porque está en la base de la civilización.

Hoy en día mucha gente está hablando de "hechos alternativos" y de la "posverdad", y estas son cosas a las cuales que se opone la ciencia. Los valores de la ciencia son los valores de la verdad y, si los enseñas a través de la educación, podrás tener sociedades que sean menos propensas a seguir personas que simplemente mienten todo el tiempo.

No hay forma de tener aplicaciones prácticas o 'útiles' si no haces ciencia básica o 'inútil' antes

La ciencia básica puede parecer inútil, pero crea una atmósfera donde los valores de la verdad sobreviven y esto es muy importante.

¿De qué manera afectó su vida el ganar el premio Nobel?

Afectó mi vida en muchos aspectos, porque me convertí en alguien que es buscado por los medios y recibo muchas solicitudes. Me invitan a dar charlas y conferencias, y viajo seguido por el mundo. Pero no me quejo porque me gusta conocer gente, viajar y dar charlas, sobre todo a estudiantes de nivel secundario, porque creo que es muy importante.

Además, ya estoy formalmente retirado del Colegio de Francia, por lo que ya no tengo que dar clases semanalmente. Si no fuese por el Nobel, mi vida sería mucho más tranquila en este momento, por supuesto.

Gracias al premio Nobel también pude mantener mi laboratorio en el Colegio de Francia y mis colegas están trabajando muy duro para continuar este tipo de investigación, e intento estar en contacto con ellos y saber lo que están haciendo. Participo en las investigaciones a través de la escritura de papers. Estoy muy activo, lo cual ciertamente se hizo más fácil por el reconocimiento del Nobel.

¿Y cómo fue ese momento en que se enteró que había ganado el Nobel?

Era el final de la mañana en París y estaba caminando por la calle, cuando recibo una llamada y veo que el código de país era de Suecia. Entonces pensé: "O es un mal chiste o es un evento importante". Era la segunda.
Ann.Onime
 
Mensajes: 63
Registrado: 2010 06 19, 8:46

Volver A CREENCIAS: cristianismo, islam, judaismo, unitarismo, politeismo, Espiritualidad laica, Física Quantica

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados

cron